

UGA Ag & Environmental Services Lab

Jay Lessl, Ph.D. Program Coordinator AOOPA & GOGA Meeting 2019

College of Agricultural & Environmental Sciences UNIVERSITY OF GEORGIA

- To provide objective analytical services to agricultural producers, consumers, and agribusinesses
- Unbiased interpretations and recommendations which contribute to a competitive agricultural industry, a healthy environment and an improved quality of life

UGA – AESL annual samples

- □ Soil 64,420
- Plant 4,810
- Animal Feed 8,100
- Water 8,570
- Microbiology 2,757
- □ Manure 1,600
- Fertilizer/Biosolids 1,640
- Pesticide/Quality 2,200
- Total: 94,097 samples

External Audits, Proficiency and Certification

protect more, test more.

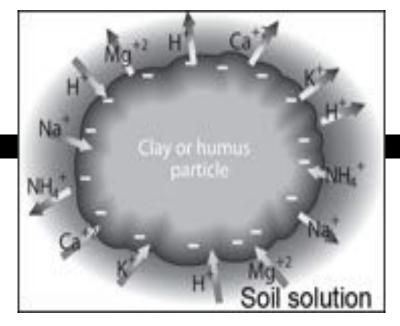
Your Global Fats and Oils Connection

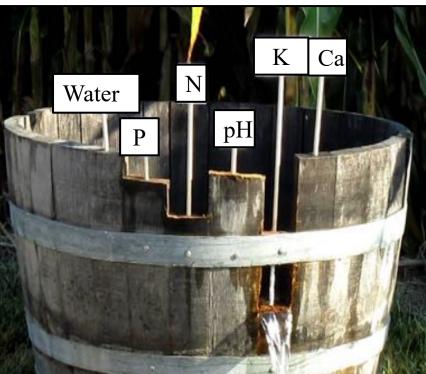
Association of American Feed Control Officials

nsi lab solutions

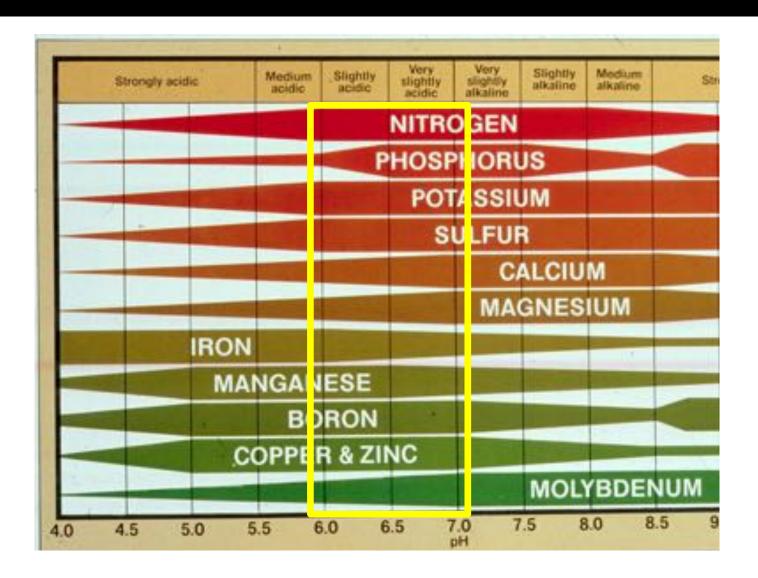
- Assoc. of American Feed Control Officials (AAFCO)
- Env. Resource Associates (ERA): Coliform and E. coli
- MN Dept. of Agriculture Manure Analysis Proficiency
- National Forage Testing Association (NFTA)
- Agricultural Laboratory Proficiency Program (ALP)
- NSI Solutions, Inc.
- State of Georgia EPD (EPD): Drinking water microbiology

A Waters Company

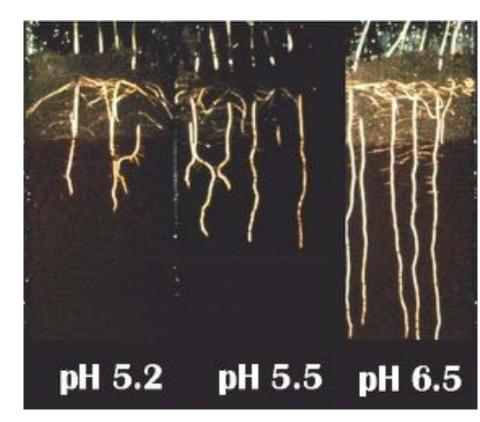

PJLA



Soil Testing


□ Why soil test?

- Soil testing is an important diagnostic tool to evaluate nutrient imbalances and understand plant growth
- Basis for intelligent application of fertilizer and lime
 - Maintain soil pH in optimum range, which keeps nutrients more available to the plant
- Protection of environment
 - Pollute our surface and ground waters by indiscriminate application of fertilizers
- Cost savings
 - Why apply what you don't need?



Soil pH & Nutrients

Soil pH

- Crop dependent
 - **D** Olives: 6.0-7.0
 - Corn, Soybean: 6.5
 - Vegetable Garden: 6.0-6.5
 - Bermuda, Fescue: 5.5-6.5
 - **D** Blueberry: 4.5-5.0
- □ Georgia soils are acidic, ~5.0
- Less than 5.5 can lead to aluminum toxicity & reduced root growth
- Sources of acidity
 Fertilizer, Natural

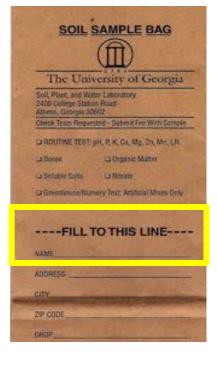
Soil Analysis

Routine Soil Test

- **D** S1; pH, LBC, P, K, Ca, Mg, Zn, Mn
- S2; CEC, Base Saturation, Na, Fe, Cu, Cr, Mo, Ni, Cd

S3; Boron

- S4; Electrical conductivity
- S5; Texture
- S6; Organic Matter
- S7; Nitrate-nitrogen
- S8; Ammonium-nitrogen
- S13; Total Elemental Analysis
- Many others...


Taking a Sample

Delineate areas

- **D** The more the better
 - 1 sample should not >10 acres
- Sample in between trees avoiding areas where fertilizer is directly applied
- Problem areas should be sampled separately
- Avoid sampling in unrepresentative areas

D Crops - each year

Soil Fertility Report Example - Olive

Ag & Environmental Services Labs

Soil, Plant, and Water Laboratory 2400 College Station Road Athens, Georgia 30602-9105 Website: http://aesl.ces.uga.edu

Soil Test Report

Sample	ID								(CEC/CE	(A Signature)	
Client Information jschmid2@uga.edu Schmidt, Jason Eutomology 229-386-7251 126 Annex Tifton, GA 31793 Sample: Veg Park 1 Crop: Olives						Lab #999 Completed: J		County Information Lanier County 162 W. Thigpen Ave Lakeland, GA 31635 phone: 229-482-3895 e-mail: uge4173@uga.edu			u
Results	<u> </u>			- Mehlic	h I Extractant-			UG	A Lime	Buffer Capa	city Method
Very High				2000000		High					High
High								-			Sufficient
Medium											- oquinareni
Low											Low
	Phosphoru (P)	s Potassi (K)		Calcium (Ca)	Magnesium (Mg)	Zinc (Zn)	Manganer (Mn)	se	рН *	Line Beffer Capacity (LBC)	
Sol Test Index	54 Ibs/Acre	59 Ibs/Ac	re	950 Ibs/Acre	120 Ibs/Acre	5 Ibs/Acre	12 Ibs/Acre		5.0	200	Soil Test Index
Recom	nendatio	ns	C	an't find a sp	ecific grade of fe	rblizer? Try our	Fertilizer Cal	iculator	http://ae	esi ces uga edu	/sol/fertcalc/
Limestor		ogen N)	the second		Potash (K ₂ O)	Sulfur (S)	Bor	ron I)		(Mn)	Zinc (Zn)
2.25 tons/A	cre 80-100	Ibs/Acre	30	Ibs/Acre	80 lbs/Acre			5		-	

Recommended pH: 6.0 to 7.0

Plant Tissue Analysis

- P1; Basic Test
- P4; Total N only
- Sampling Guide
 - **D** Young mature leaves
 - **D**uring growth extension
 - **1** 1-2 leaves from >20 trees
 - Exclude pollinators or abnormal trees

Send in Paper Bags

Plant Tissue Report - Olive

Ag & Environmental Services Labs

Soil, Plant, and Water Laboratory

2400 College Station Road Athens, Georgia 30602-9105 Website: http://aesl.ces.uga.edu

Plant Analysis Report

(CEC/CEA Signature) Sample ID Lab Information Client Information Contact ilessl@uga.edu Lab #31 Doe, John Soil, Plant, and Water Laboratory 706-542-5350 Received: Jul 6, 2018 1234 First Street 2400 College Station Road Completed: Jul 12, 2018 Athens, GA 30602 Dade City, FL 33523 Printed: Feb 9, 2019 Sample: Block II ph: 706-542-5350 Tests: PI Crop: Olive e-mail: soiltest@uga.edu

Percentage (%)				Parts Per Million (ppm)							
(P)	Potassium (K)	Calcium (Ca)	Magnesium (Mg)	Sulfur (S)	Manganese (Mn)	iron (Fe)	Aluminum (Al)	Boron (B)	Copper (Cu)	Zinc (Zn)	Nickel (Ni)
).66	1.77	1.06	0.14	0.26	24	52	33	24	8	30	<1
0	P)	P) (K)	P) (K) (Ca)	P) (K) (Ca) (Mg)	P) (K) (Ca) (Mg) (S)	P) (K) (Ca) (Mg) (S) (Mn)	P) (K) (Ca) (Mg) (S) (Mn) (Fe)	P) (K) (Ca) (Mg) (S) (Mn) (Fe) (Al)	P) (K) (Ca) (Mg) (S) (Mn) (Fe) (AI) (B)	P) (K) (Ca) (Mg) (S) (Mn) (Fe) (Al) (B) (Cu)	P) (K) (Ca) (Mg) (S) (Mn) (Fe) (Al) (B) (Cu) (Zn)

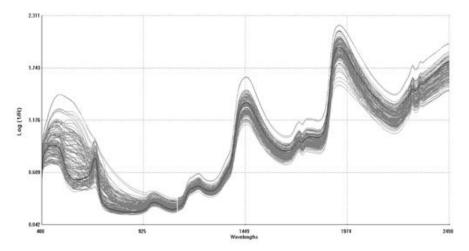
Crop Quality Laboratory

Started in 2013 to provide analytical support for specialty crops in Georgia

- Ensure Quality
- Support Research

Crop Quality Laboratory

- Developed basic olive oil analysis procedures
- Mentor student projects that compared quality of Georgia's olive oil to other premium oils
- Participating in the American Oil Chemistry Society (AOCS) laboratory proficiency program since 2015
- > Measure impact of pruning on olive quality
- > Develop oil and moisture NIR calibration specific to SE region



NIR Calibration

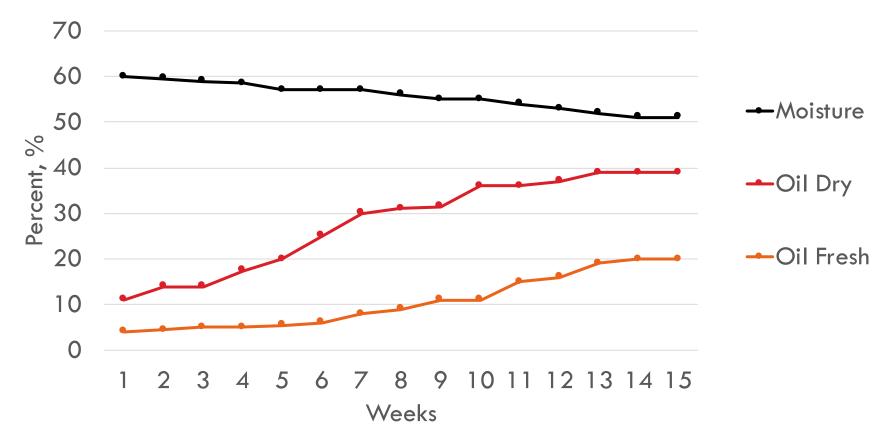
- Near Infra-red Spectroscopy to determine olive moisture and oil content
- Olives collected from the Georgia and Florida
 - **D** 30 samples in 2015
 - **1**28 samples in 2016
 - **D** FOSS XDS NIR system

NIR Calibration

Benefits for testing olives

- Turnaround time 1 day vs. 5-7 days
- □ Cost \$20 vs \$80+
- Accurate
- Information
 - %Moisture
 - ∎ %Oil
 - 9 fatty acids

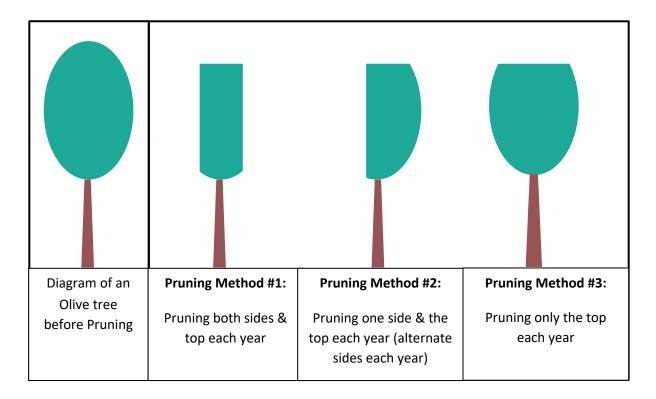
		Ar	NALTIICAL RESUL	15
	Course Date	C	Moisture	
LAB ID #	Sample Date	Dry Weight, %	Fresh Weight, %	%
CEQ 154	9/2/2018	26.81	10.22	37.81
	Typical Ranges:	10 - 45	5 - 22	40 - 60


*Ideal time to harvest olives is when oil content stops increasing and moisture content is around 50%

Additional Parameters	Results	Normal Ranges	
Fresh Oil content, g/kg	102.2	50-220*	
Palmitic, %	19.0	7.5-20%	
Stearic, %	1.5	0.5-5%	
Oleic, %	60.6	55-83%	
Linoleic, %	14.3	3.5-21%	
Linolenic, %	1.0	<1.5%	

NIR Calibration

Fruit Oil and Moisture Levels



Test No.	Description	Fee (\$)
С8	Percent Moisture & Oil (NIR)	20.00
С9	Peroxide Value (PV)	30.00
C10	Free Fatty Acid Content (FFA)	30.00
C11	Specific Extinction, Ultraviolet Absorption (UV)	45.00
C12	Fatty Acid Profile (FAP)	60.00
C13	Oil Quality (PV, FFA, UV, FAP) for extra virgin status	125.00

Pruning Study

- Both sides of the tree/hedgerow in two year rotation with annual top pruning. (Green Post)
- Both sides of the tree/hedgerow in three year rotation with annual top pruning. (Red Post)
- □ Alternating halves of the tree every year with annual top pruning. (White Post)

Plant & Soil Results 2018 DESTENSION

Results			- Mehlic	h I Extractan
Very High				
High				
Medium				
Low				
	Phosphorus (P)	Potassium (K)	Calcium (Ca)	Magnesium (Mg)
Soil Test Index	35 Ibs/Acre	25 Ibs/Acre	507 Ibs/Acre	35 Ibs/Acre

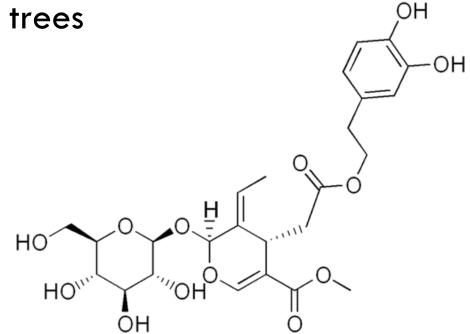
Percentage						Parts Per Million (ppm)				
Nitrogen	Phosphorus	Potassium	Calcium	Magnesium	Sulfur	Manganese	Iron	Boron	Copper	Zinc
(N)	(P)	(K)	(Ca)	(Mg)	(S)	(Mn)	(Fe)	(B)	(Cu)	(Zn)
1.39	0.34	1.49	1.04	0.10	0.16	23	42	24	8	30
Sufficier	Sufficiency ranges:									
1.50 -	0.10 -	0.80 -	1.00 -	0.10 -	0.10 -	20 - 100	35-66	20 - 75	5 - 10	20 - 50
2.00	0.30	1.20	2.00	0.30	0.25	20 100		20 70	• • •	

Olive Oil Results

Location	Treatment	FFA (% Oleic)	Peroxides (meq/kg oil)	232	270	Delta K
AR	Green	0.15	2.12	1.55	0.12	0.02
AR	White	0.17	3.17	1.49	0.12	0.01
AR	Red	0.20	3.33	1.57	0.12	-0.02
Mill	Green	0.20	1.78	1.49	0.11	0.00
Mill	White	0.16	1.66	1.49	0.11	-0.01
Mill	Red	0.14	1.68	1.52	0.13	-0.02

	IOC/USDA Standard for Extra Virgin Olive Oil
Test	virgin Onve On
Free Fatty Acid, %	≤0.8
Peroxide Value, meq/kg	≤20
K232	≤2.50
K270	≤0.22
Delta K	≤0.01

Olive Oil FFA



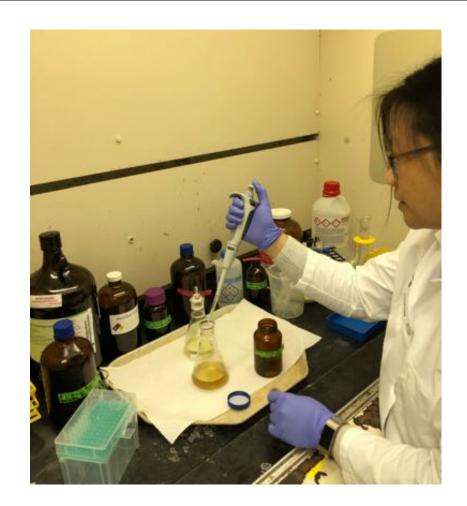
Fatty Acid	Carbon	Result	Range
Palmitic	C16:0	19.21	7.5 - 20.0
Palmitoleic	C16:1	3.67	0.3 - 3.5
Heptadecanoica	C17:0	0.06	< 0.50
Heptadecenoic	C17:1	0.18	< 0.60
Stearic	C18:0	1.68	0.5 - 5.0
Oleic	C18:1	59.05	55.0 - 83.0
Linoleic	C18:2	14.85	3.50 - 21.0
Linolenic	C18:3	0.64	< 1.50
Arachidic	C20:0	0.30	< 0.80
Behenic	C22:0	0.20	<0.30
Lignoceric	C24:0	0.09	< 1.0

- Continue monitoring pruning
- Airflow and pollination
 - Monitor movement of pollen and treat rows with fans
- Alternative uses of olive trees
 - Olive leaf extracts
 - Oleuropein

Additional Information

AESL website - http://aesl.ces.uga.edu

aesl.ces.uga.edu/FeeSchedule


- Fertilization Calculator
 http://aesl.ces.uga.edu/soil/fertcalc
- Drinking Water Interpretation and Recommendations
 http://aesl.ces.uga.edu/water/recommendations
- Soil Publications
 - http://aesl.ces.uga.edu/publications/soilcirc
 - Organic fertilizer
 - Nitrogen mineralization
 - Soil testing
 - Lime requirements
 - Soil pH
 - Plant Tissue sampling

Thank You!

